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a b s t r a c t

In this study, the one-dimensional Bin Packing Problem (BPP) is approached. The BPP is a classical
optimization problem that is known for its applicability and complexity. We propose a method that is
referred to as the Grouping Genetic Algorithm with Controlled Gene Transmission (GGA-CGT) for Bin
Packing. The proposed algorithm promotes the transmission of the best genes in the chromosomes
without losing the balance between the selective pressure and population diversity. The transmission of
the best genes is accomplished by means of a new set of grouping genetic operators, while the evolution
is balanced with a new reproduction technique that controls the exploration of the search space and
prevents premature convergence of the algorithm. The results obtained from an extensive computational
study confirm that (1) promoting the transmission of the best genes improves the performance of each
grouping genetic operator; (2) adding intelligence to the packing and rearrangement heuristics enhances
the performance of a GGA; (3) controlling selective pressure and population diversity tends to lead to
higher effectiveness; and (4) GGA-CGT is comparable to the best state-of-the-art algorithms, out-
performing the published results for the class of instances Hard28, which appears to have the greatest
degree of difficulty for BPP algorithms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The off-line one-dimensional Bin Packing Problem (BPP) is
defined as follows. Given an unlimited number of bins with a
fixed capacity c40 and a set of n items, each with a specific
weight 0owirc, BPP comprises packing all of the items into the
minimum number of bins without violating the capacity of any
bin. The size m of the solution is defined by a partition of the set of
items into m subsets, each of which corresponds to the content of
one bin. BPP is a well-known grouping optimization problem that
is considered to be intractable because it belongs to the NP-hard
class; as a result, it demands a large amount of resources for its
solutions [1]. The importance of BPP comes from its extensive
number of industrial and logistic applications; furthermore, BPP

frequently occurs as a sub-problem in several practical problems
in different areas [2–4].

In the present work, a Grouping Genetic Algorithm with Con-
trolled Gene Transmission (GGA-CGT) for Bin Packing is presented.
GGA-CGT incorporates efficient heuristics to drive the transmis-
sion of the best genes of the chromosomes, to favor the genera-
tion and evolution of high-quality solutions. We propose (a) a
new efficient packing heuristic that improves the packing process
and promotes the generation of a high-quality initial population;
(b) the use of intelligent grouping operators, which promote the
transmission of the best genes and the exploitation of the search
space; (c) a new simple rearrangement procedure that improves
solutions and promotes the exploration of the search space; and
(d) the use of a controlled reproduction technique to ensure the
balance between selective pressure and population diversity. The
proposed algorithm and its main components are experimentally
contrasted with related studies from the literature to confirm
that the gene transmission strategy is a promising approach.
Experimental results show that GGA-CGT obtains high-quality
solutions in a short amount of time for all of the standard
instances, outperforming the effectiveness of the best algorithms
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that are state-of-the-art in the most difficult instances, the
Hard28 class [5,6].

In Section 2, we describe the most prominent algorithms that
were designed for the BPP solution. In Section 3, we introduce our
new grouping genetic algorithm, which is referred to as GGA-CGT.
Next, in Section 4, we present the components of GGA-CGT. In
Section 5, we propose a new reproduction technique for control-
ling the evolutionary process. To show the effectiveness of each of
the proposed strategies, preliminary computational experiments
are scattered throughout the paper. The main experiments are
shown in Section 6; this section presents the study of the overall
performance of GGA-CGT and the impact of some of its features.
Last, in Section 7, we present the conclusions and discuss further
research directions.

2. Related studies

Over the past twenty years, throughout the search for the best
possible solutions for BPP, elaborate procedures that incorporate
various techniques have been designed. The performance of the
algorithms has been evaluated with different types of published
problems that were considered to be very hard. The most relevant
results have been obtained by means of hybrid and heuristic
algorithms [6–8].

Martello and Toth [9] proposed a branch-and-bound procedure
(MTP) and a dominance criterion [10] to reduce the search space.
The criterion establishes that if it is possible to extract a set of small
items from a bin and substitute them for a single free item of the
same weight, then it might be easier to improve the solution. This
fact is true because it is easier to pack the set of small items into the
remaining bins than to find a place for the larger item. Falkenauer
[7] proposed a hybrid grouping genetic algorithm (HGGA) that uses
a special encoding scheme for groups of items and a local optimiza-
tion heuristic inspired by the dominance criterion of Martello and
Toth. Scholl et al. [11] developed a hybrid technique (BISON) that
combines a tabu search-based heuristic with a branch-and-bound
method, using a “dual” strategy that comprises minimizing the
fullness of the bins given a fixed number of bins. The proposed
procedure includes a new branching scheme, which is based on
some lower bounds of the optimal solution. Schwerin and Wäscher
[12] proposed a new lower bound for BPP that is based on the
cutting stock problem, and they integrated it into the MTP proce-
dure of Martello and Toth, obtaining high-quality results with their
new procedure (MTPCS).

Fleszar and Hindi [13] developed a new high-quality algorithm
(Perturbation-MBS’) that incorporates a modified version of the
MBS heuristic from Gupta and Ho [14], a procedure that is based on
a variable neighborhood search and lower bounds, to successively
build a new solution by perturbing the current solution. Levine and
Ducatelle [15] proposed a hybrid procedure that implements the
ant colony optimization metaheuristic (HACO-BP), which includes a
strategy for a local search that relies on the dominance criterion
from Martello and Toth [10]. Bhatia and Basu [16] introduced a
multi-chromosomal grouping genetic algorithm (MGGA) with group-
ing genetic operators and a rearrangement procedure based on the
better-fit heuristic. Alvim et al. [8] presented a hybrid improvement
heuristic (HI_BP) in which the dual strategy used by Scholl et al. [11]
is reintroduced, in addition to the search space reduction techniques
of Martello and Toth [10] and the use of lower bounding strategies.
This procedure uses a load redistribution method that is based on
dominance, differencing, and unbalancing and the inclusion of an
improvement process that utilizes a tabu search, obtaining the best-
reported results until that moment.

Singh and Gupta [17] proposed a combined approach (C_BP)
that uses two heuristics: a hybrid steady-state grouping genetic

algorithm and an improved version of the Perturbation-MBS'
heuristic from Fleszar and Hindi [13]. Although the obtained
performance is comparable to the HI_BP strategy from Alvim
et al. [8], the procedure C_BP presents a less robust behavior in
terms of the number of times that it finds the optimal solutions.
Stawowy [18] proposed the use of a non-specialized evolutionary
strategy (ES) that includes the following: a modified permutation
with a separators encoding scheme, a separators removal techni-
que for problem size reduction and intelligent mutations. The
results that were obtained by this procedure are comparable to
other results from more complex algorithms, such as HGGA and
HI_BP [7,8]. Rohlfshagen and Bullinaria [19] developed a new
genetic algorithm that was inspired by aspects of molecular
genetics (ESGA). The authors compared their results with other
state-of-the-art strategies, such as HI_BP and BISON [8,11], and
obtained promising results.

Loh et al. [20] developed a weight annealing procedure (WA),
making use of the concept of weight annealing to expand and
speed up the neighborhood search by creating distortions in
different parts of the search space. The proposed algorithm is
simple and easy to implement, and the authors reported a high-
quality performance, outperforming the solutions obtained by
HI_BP [8]. Gómez-Meneses and Randall [21] presented a new
evolutionary approach that uses the principle of eliminating the
weakest component of a population and replacing it by a random
component: hybrid extremal optimization (HEO). This procedure
incorporates a local search that is inspired on the basis of the
proposed Falkenauer’s technique to improve the quality of the
packing [7]. Lewis [22] proposed an intuitive hill-climbing method
(HC) that uses a simple improvement scheme based on the
dominance criterion to increase the fullness of the bins; the
approach obtains good solutions, outperforming some algorithms
[7,15] without surpassing the best state-of-the-art algorithms.

The most recent work in this area, to our knowledge, was
presented by Fleszar and Charalambous [6]. The authors proposed
a modification to the Perturbation-MBS' method [13] that uses a
new sufficient average weight (SAW) principle to control the
average weight of the items that are packed in each bin (Perturba-
tion-SAWMBS). This heuristic outperforms the best algorithms
from the state-of-the-art HI_BP, C_BP and WA [8,17,20]. In their
paper, Fleszar and Charalambous [6] presented corrections to the
results that were reported by Loh et.al [20] for the WA heuristic.

The study of the literature that is related to the BPP solution
revealed that, until now, the best algorithms are the following:
HGGA [7], HI_BP [8] and Perturbation-SAWMBS [6]. In Section 6,
we compared the results that were obtained by our algorithmwith
the results that were obtained by these approaches; this compar-
ison showed the impact of our strategies, which promote the best
characteristics of the BPP solutions.

3. GGA-CGT genetic algorithm

A genetic algorithm (GA) is an evolutionary strategy that
emulates the natural evolutionary process, seeking good-quality
solutions to optimization problems. A GA modifies and re-combines
pieces of existing solutions, which are encoded into chromosomes,
by means of techniques that are inspired by biological evolution,
such as the generation of an initial population, the selection of
individuals with desirable characteristics, crossover, and mutation.
Typically, the search for better solutions is guided by the results of
evaluating a fitness function for each individual in the population,
which is some ad-hoc function or the objective function. Based on
this evaluation, individuals who have a higher fitness are given
more opportunity to breed.
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Fig. 1 presents GGA-CGT, the algorithm that is proposed in this
study (see Section 4 for a description of each genetic operator).
This process begins generating an initial population P of indivi-
duals with our FF-ñ packing heuristic (Line 1). Then, for a
maximum of max_gen generations, selected individuals are recom-
bined and mutated in two phases. In the first phase (Lines 3–5), nc
individuals are selected with Controlled_Selection, and the Gen-
e_Level_CrossoverþFFD operator is applied to them; then, Con-
trolled_Replacement is used to introduce the progeny. In the
second phase (Lines 6–8), according to a predefined life_span, elite
individuals are cloned, and the best nm individuals are selected to
be the subject of genetic alterations by means of the Adaptive_-
MutationþRP operator; next, clones are introduced to the popula-
tion by means of Controlled_Replacement. At the end of each
generation, the global best solution is updated (Line 9). The final
result of the algorithm is obtaining the most capable individual
over all of the evolutionary process. The algorithm iterates the
maximum number of generations, max_gen, and it stops when it
finds a solution for which the size matches the L2 lower bound of
Martello and Toth [9].

4. GA components

In this section, the intelligent grouping heuristics that are used
for the generation and evolution of the BPP solutions (GA compo-
nents) are described. As a principal contribution, we propose the
following: a new intelligent packing heuristic that simplifies and
improves the items’ packing, a new rearrangement procedure that
enables the exploitation and exploration of the search space and a
new set of GA operators that preserve the best genes in the
chromosomes.

4.1. Genetic encoding

The encoding of an optimization problem solution into a
chromosome is a key issue in obtaining good GA performance.
Generally, three encoding schemes have been proposed for bin
packing problems: bin-based representation, object-based repre-
sentation and group-based representation [23]. In the bin-based
representation, a chromosome has a fixed length that is equal to
the number of items, and each gene represents an item and
indicates the bin where the item is packed. In the object-based
representation, a chromosome represents a permutation of items,
and a decoder is applied to retrieve the corresponding solution. In
the group-based representation, the chromosomes could vary in
length depending on how many bins are used in every solution;
each gene in the chromosome represents a group of items,
encoding the groups on a one-gene-for-one-bin basis. Falkenauer
and Delchambre [24] noted that the first two encodings (bin-based
and object-based) could run into difficulties because they are
highly redundant and are not adapted to the BPP cost function; the
authors proved that the group-based encoding scheme avoids
these problems. Given the above reasons, we have chosen to

represent our solutions with the group-based encoding scheme. In
this way, our grouping genetic operators will work with the bins
and the information about which items belong to which bins.

4.2. Fitness function

The fitness evaluation is made by means of the cost function that
was introduced by Falkenauer and Delchambre [24]. The cost function
evaluates the average of the squaring of the ‘bin efficiency’, which
measures the exploitation of a bin's capacity. Given this function, it is
better to have some nearly full bins and some nearly empty bins
rather than several equally filled bins. Thus, in the evolutionary
process, nearly empty bins can more easily be eliminated, and it is
more likely that the small items that are packed in them could be
moved to existing non-full bins (which would yield an improved
solution). Additionally, the nearly empty bins will more easily
accommodate additional items, which could otherwise be too large
to fit into either of the half-filled bins. The objective of the GGA-CGT
algorithm is to maximize the fitness values of the individuals in the
population. Eq. 1 defines the cost function for the BPP, wherem is the
number of bins that are used in the solution, Si is the sum of the item
weights in bin i, and c is the capacity of the bins.

FBPP ¼
∑m

i ¼ 1 Si=c
� �2
m

ð1Þ

4.3. Initial population

The initial population in most BPP evolutionary approaches is
generally generated in a random manner by running a BPP heuristic
on random permutations of the items [7,18,19]. Although we also
generate random solutions, we first contribute to simplifying and
improving the items' packing using a heuristic that is based on a
dominance pattern that, given the set N of n items, determines the
subset Ñ of ñ items that have weights that are larger than fifty percent
of the bin capacity. The ñ value represents the total number of large
items that could not be combined with others of the same subset. We
propose the FF-ñ heuristic, which takes advantage of this knowledge
to reduce the number of steps in the packing process and to obtain
solutions that have well-filled bins:

4.3.1. First fit with ñ pre-allocated-items (FF-ñ)
First, the ñ large items of Ñ are packed in separate bins; then,

the items of N\Ñ are placed using the standard FF packing heuristic
on a random permutation of this subset. Each of the items of N\Ñ is
placed in the first bin that has sufficient available capacity to
accommodate the item; if none of the bins can store it, the item is
placed in a new empty bin.

Experimental results showed a significant improvement in the
solutions' quality and packing efficiency by generating the initial
population using our FF-ñ heuristic rather than the FF heuristic.
For example, Fig. 2 presents the average number of bins that were

Fig. 1. The proposed grouping genetic algorithm GGA-CGT for the bin packing
problem.
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Fig. 2. Experimental results obtained by FF and FF-ñ packing heuristics applied to
the u1000 class (number of bins).
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obtained by generating 100 random solutions with FF and FF-ñ
packing heuristics for the 20 instances of the uniform class u1000,
where the average proportion of large items is ñ/n¼0.3. From this
figure, it can be observed that by packing the ñ large items first,
the average quality of the random solutions is improved between
5 and 8 bins for each instance. For the 1615 standard instances,
when FF-ñ was applied (ñ40), we observed an average improve-
ment of 3.67 bins for the solutions in the initial population using
our heuristic rather than FF; for large instances (nZ500) when ñ/
n40.5, the average improvement was 10.94 bins. These results
hence prove that adding intelligence to the packing heuristics imp-
roves the solutions' quality and packing efficiency. In Section 6.3, we
analyze the performance of our GGA-CGT over instances with different
proportions of large items, which shows the impact of generating the
initial population with FF-ñ instead of FF.

Generally, the N\Ñ items can be placed using any BPP packing
heuristic. In this case, FF was chosen after comparing it with BF and
WF because FF is the simplest among them, and we did not observe
significant differences in the average quality of the population
between their experimental results. Johnson [25] provides more
information about the standard heuristics FF, BF and WF.

4.4. Grouping crossover operator

Generally, a crossover operator takes two parent solutions
(chromosomes) and recombines them to produce a child solution.
Given the two chromosomes, crossing them implies determining
which genes must be inherited from parents to children. Those
genes that survive the evolutionary process are characterized as

being dominant over the others. In many types of problems,
patterns of genes that are “close together” are meaningful, and
preserving a section of the genes (a segment of the chromosome)
from a good solution tends to lead to another good solution.
However, when we use a grouping encoding scheme, the patterns
of genes that are “close together” are much less meaningful, and
preserving those patterns is not an appropriate goal for a recom-
bination operator [26].

A high-quality crossover operator must be able to propagate to
the offspring those patterns of features that contribute to increas-
ing the fitness of the parents. In the case of a BPP solution, it is
easy to realize that the better each bin is used, the fewer bins are
needed to pack the items. Thus, in an optimal solution, it is
expected that most of the bins are almost filled; therefore, the
well-filled bins, which we refer to as the fullest-bin pattern, are
the features of the chromosome that contribute to the fitness of
the individuals.

4.4.1. Gene-level crossover
Accounting for the fullest-bin pattern, we propose a new BPP

crossover that enables the parent chromosomes to contribute at
the gene level rather than at the segment level, giving a higher
probability of being preserved to the best genes (the fullest bins).
Fig. 3 includes an example of this operator. Given two parent
solutions p1 and p2, our crossover operator is used twice, to generate
two children: p1 with p2 and p2 with p1. This operator considers the
bins in descending order of their filling, to increase the likelihood
that the best bins will be inherited by the children. Beginning at the
best bin, the individual bins of both parents are compared in parallel,

second father

first father

first father

second father

A B C D E

ecba d

A a C E

A a C E

Consider a BPP instance with bin capacity equal to 10 and 9 items N = {0,...,8} with weights (6,3,7,8,5,2,2,5,2).
Given two solutions taken from the population, there is one gene per bin, and every gene stores a group of items. 
Bins are considered in descending order of their fullness (which is the sum of the item weights in the bin):

To complete the new individual (child), we use FFD packing heuristic to reinsert again the free items and obtain a 
new solution (free items 7 and 8 were packed in bins E and C, respectively):

child

A a B b EedC c D

10 9 8 8 5
3,5 8,2 0,6 1,7 4

10 8 8 7 7
1,2 3 0,8 4,6 7,5

10 9 8 8 5
3,5 8,2 0,6 1,7 4

10 8 8 7 7
1,2 3 0,8 4,6 7,5

10 10 9 8 8 8 8 7 7 5
3,5 1,2 8,2 3 0,6 0,8 1,7 4,6 7,5 4

10 10 8 5
3,5 1,2 0,6 4 7,8

10 10 10 10
3,5 1,2 0,6,8 4,7

Bin A is packing items 3 and 5 and its fullness is 10

Beginning at the first gene, individual bins of both parents are compared in parallel, bin by bin (bin A with bin a, 
bin B with bin b, bin C with bin c, and so on):

For every pair of bins, the “fullest bin” is the first bin to be inherited to the new solution, followed by the immediate
inheritance of the other bin (e.g., in the second gene, bin B is fuller than bin b, so we copy bin B before bin b); if 
both of the bins have the same fullness, then preference is given to the first father’s bin (e.g., for bins A and a, we 
first inherit bin A):

Next, some of the items appear twice in the solution (e .g., bin B includes item 2, which is already in bin a), so we 
eliminate bins that include items that are in a previous bin (bins B, b, c, D, d and e). Then, we have some items that
were not packed in the new individual (items 7 and 8).

Free items
Partial solution

Fullness 
Items

Fig. 3. An example of the gene-level crossover operator that preserves the fullest-bin pattern.
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bin by bin. For each pair of bins, the fullest-bin is the first bin to be
inherited by the new solution, followed by immediately inheriting
the other bin. If both of the bins have the same fullness, then
preference is given to the first father's bin. If one solution includes
more bins than the other, then after all of the pairs of bins are
compared and inherited, the remaining bins of the longer solution
are inherited directly from this solution. Bins with duplicated items
are eliminated from the new solution, and free items are reinserted
with the FFD packing heuristic.

To show the contribution of our new crossover operator, we
conducted a comparative experiment with three crossover alter-
natives: (1) segment-level crossover [24]; (2) the proposed gene-
level crossover without considering the bins in descending order
of their filling; and (3) the proposed crossover with ordered bins.
All of the algorithms were run under the same conditions. We
used a population of 100 individuals who was generated with
FF-ñ. In each experiment, for a maximum of 100 generations, the
100 individuals (taken at random) were replaced by their progeny,
which were produced by a crossover operator; FFD was used to
reinsert the free items. We experiment with nine sets of bench-
mark instances that are recognized by the scientific community
[27–30]. Table 1 shows the results that were obtained in the
experiment.

For every class of instances, Table 1 first shows the number of
test cases (Inst.), followed by the number of optimal solutions
found by each crossover alternative (opt.). Last, the table shows
the total relative difference (dif.), which is defined as (y�x)/x,
where x is the optimal or best-known solution value, and y is the
number of bins obtained by an algorithm. The last row of the table
shows the effectiveness, which is defined as o/t, where o is the
number of optimal solutions obtained by an algorithm, and t is the
total number of instances used in the experiment. From the table,
it can be observed that we observed an effectiveness improvement
of 11% using a gene-level crossover rather than the segment-level
crossover and an improvement of 19% by giving a higher prob-
ability to the best bins to be inherited, which is implicit in the
ordering. These results prove that our strategy for preserving the
fullest-bin pattern (that promotes the transmission of the best
genes) tends to lead to a higher performance.

4.5. Grouping mutation operator

The grouping mutation operator has the function of introducing
random changes (at a low rate) into the population by producing a

small modification in some of the chromosomes. In traditional GAs,
a mutation is applied by flipping each gene of the chromosome
with a small probability. The mutation operator for BPP, which is
encoded by the group-based scheme, has been defined differently
[24]: given a chromosome, a few bins are eliminated from the
solution; the items that composed those eliminated bins are thus
missing from the solution, and they must be reinserted with some
rearrangement heuristic. Usually, the selection of the bins to
eliminate is made at random [7,19]; however, it has been noted
that it is important to eliminate at least three bins and always
eliminate the emptiest bin, to increase the probability of improving
the solution quality [17,24]; we combine these two approaches.

Mutation operators that were proposed in the literature are
highly disruptive and lose important genetic information by giving
the same elimination probability to good and bad genes; in this
way, some of the fullest bins are eliminated from the solution,
losing patterns that are used to contribute to the solution's quality
[7,31]. Next, let us consider the case in which all of the chromo-
somes, regardless of their size, have the same mutation prob-
ability; for example, when pm¼0.1, for a solution of 20 bins, we
could expect to eliminate approximately 2 bins, which might be
too few to obtain an improvement in the quality of the solution.
However, for a solution of 1000 bins, we could expect to eliminate
approximately 100 bins, which loses a large amount of genetic
information and represents a substantial job for the rearrange-
ment heuristic.

4.5.1. Adaptive mutation operator
We propose a new mutation operator, which works at the gene

level (bin), promoting the transmission of the best genes in the
chromosome. To introduce new genetic material without losing
the best individual patterns (the well-filled bins), this new BPP
mutation operator considers the bins in descending order of their
filling, eliminating the least full bins of the solution and reinsert-
ing their items with a rearrangement heuristic (see Section 4.6). In
contrast to the approach followed in the literature, we propose an
adaptive function to calculate the number of bins to be eliminated
from the solution. For each individual to mutate, the number of
bins to eliminate nb is a random variable that is calculated in
relation to the size of the solution and the number of incomplete
bins (that are not filled completely). Given a BPP solution with m
bins, of which ι bins are incomplete (ι41), the number of bins to
eliminate is given by Eq. (2), where ε is the elimination proportion
defined by Eq. 3, pε is the elimination probability defined by Eq.
(4), and k is a parameter that defines the rate of change of ε and pε
with respect to ι (k40).

nb ¼ ⌈ιUεUpε⌉ ð2Þ

ε¼ 2�ðι=mÞ
ι1=k

ð3Þ

pε ¼ 1�Unif orm 0;
1
ι1=k

� �
ð4Þ

Let us concentrate on Eqs. (3) and (4); the elimination propor-
tion ε is inversely proportional to the number of incomplete bins
(ι) and the percentage of incomplete bins (ι/m). In this way, the
percentage of bins to eliminate (nb/m) is higher when the solutions
are smaller and decreases with larger solutions. Alternatively, the
elimination probability pε is directly proportional to the number of
incomplete bins, allowing, in most cases, more variations in ε
when the solutions are smaller. Fig. 4 includes an example of this
operator.

Note that our mutation operator introduces new genetic material
without losing the fullest-bin pattern, but this arrangement does not
mean that our operator is a local searchmechanism. By not allowing a

Table 1
Experimental results for the segment-level crossover proposed by Falkenauer, and
our proposed operators: gene-level crossover without and with ordered bins. The
last operator gives a higher preserving probability to fullest-bins.

Class Inst. Segment-level
crossover

Gene-level crossover

opt. dif. Without ordered
bins

With ordered
bins

opt. dif. opt. dif.

Uniform 80 2 1.33 16 0.78 63 0.09
Triplets 80 0 7.90 0 6.64 0 2.00
Data Set 1 720 568 3.11 618 1.40 695 0.24
Data Set 2 480 284 7.63 322 5.83 439 0.65
Data Set 3 10 0 0.48 0 0.48 7 0.05
Was 1 100 8 5.11 48 2.88 89 0.61
Was 2 100 47 2.42 78 1.01 95 0.23
Gau 1 17 3 0.83 5 0.70 12 0.20
Hard28 28 5 0.33 5 0.33 5 0.33
Total 1615 917 29.18 1092 20.08 1405 4.44
Effectiveness 0.56 0.67 0.86
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reduction in the fullness of the best bins, we ensure the preservation
of the fullest-bin pattern; however, we allow swaps between the
items of the best bins and the free items to promote the creation of
new genetic material. On the other hand, after the first phase of our
rearrangement heuristic, the free items are reinserted by using the FF
packing heuristic; thus, the fitness of the mutated solution could be
worse than its original fitness.

4.6. Rearrangement heuristics for grouping operators

In the solution process, the genetic operators generate and modify
individuals. During this process, some of the bins are eliminated, and
free items exist that must be reinserted into the solution (see
Figs. 3 and 4); to accomplish this reinsertion, some authors have
used simple packing heuristics such as FFD or BFD [24,31], and others
have used local optimizations [7,32]. It has been demonstrated that
the success of a grouping genetic algorithm (GGA) is heavily
dependent on the replacement heuristic and that adding intelligence
to these heuristics enhances the performance of a GGA [26]. The
example in Fig. 4 provides evidence that the use of a rearrangement
heuristic that is capable of making swaps between packed and free
items would have a positive impact on the effectiveness of the
proposed mutation operator. We propose a new simple rearrange-
ment procedure that works with pairs of free items.

4.6.1. Rearrangement by Pairs (RP)
This heuristic is composed of two stages: first, each bin is

checked in an attempt to improve its package by making swaps
between pairs of packed and free items; second, the final free
items are introduced to the solution using the FF packing heuristic.
We summarize in Fig. 5 the procedure RP, and we denote by
S’¼Swap(S, F, (p, s), i) the solution derived from S by swapping
items p and s of the current bin Bj with the free item i of set F.
Feasible(S') returns TRUE if the swap does not exceed the capacity
of Bj and FALSE otherwise. In the first stage (Lines 1–10), given a
random permutation of the bins and a random permutation of the
free items, each bin is considered until a replacement is possible.
For every pair of items in the bins, the free items are also
considered in pairs. For every two pairs of items, there are two
alternatives for replacement: (a) if it is possible, then replace the
pair of items in the bin with one of the two free items of equal or
higher weight that does not exceed the bin capacity (Lines 7–8);
(b) if the pair of free items can fill the bin as good as or better than
the pair of items in the bin without overflowing the bin, then swap
the pair of items in the bin with the pair of free items (Line 9). In
the second stage (Line 11), the FF heuristic is applied to reinsert
the free items and complete the solution. A random permutation
of the free items is useful when the weight of the largest free item
is less than fifty percent of the bin capacity; in the alternative case,

Fig. 4. An example of the adaptive mutation operator that preserves the fullest-bin pattern.

Fig. 5. Rearrangement by Pairs (RP) procedure.
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it is better to take the free items in descending order, to induce the
fullest-bin pattern.

Note that our new rearrangement procedure has important
consequences in the exploitation and exploration of the search
space; it improves the quality of the genetic material, finding fuller
bins, when a swap that increases the fullness of a bin is performed.
It also allows for exploring new groups of items, when different or
smaller item weights are made available for the packing heuristic;
for this reason, we make swaps even when the items do not
change the fullness of the bins.

To show the contribution of the adaptive mutation operator and
the RP rearrangement heuristic, we conducted three experiments:
(1) using the Falkenauer mutation with pm¼0.1 [24]; (2) using
adaptive mutation; and (3) using adaptive mutation with the RP
heuristic. All of the experiments were conducted under the same
conditions. We used a population of 100 individuals who were
generated with FF-ñ. In each experiment, for a maximum of 100
generations, these 100 individuals were mutated; in the first two
experiments, FFD was used to reinsert the free items.

Table 2 shows the results that were obtained in each experiment. It
can be observed that we observed an effectiveness improvement of
16% using our mutation rather than the Falkenauer mutation. These
results confirm that our strategy by which to preserve the fullest-bin
pattern, which promotes the transmission of the best genes, tends to
be more effective and that the use of an elimination proportion as a
randomvariable makes a major contribution to the mutations' success.
Last, we can see that our rearrangement by pair (RP) heuristic
improves the performance of our mutation operator by 22%, which
demonstrates that adding intelligence to the rearrangement heuristic
enhances the performance of a GGA.

5. Reproduction technique

The performance of a GA is affected not only by the genetic
operators but also by the reproduction technique that is used to
implement them. The reproduction technique defines how indivi-
duals must be chosen for reproduction and what individuals
survive from one generation to the next. Not all of the algorithms
produce an entirely new population at each generation. An elitist
strategy involves copying the best individuals without changing
them when they move from the current population to the new
population. In a steady-state GA, n new individuals are introduced
to the population each generation, and some of these new
individuals could be selected to breed before moving on to the
next generation. A well-planned reproduction technique will
significantly impact the GA performance. We propose a new
selection scheme and a new replacement strategy; they integrate

our new reproduction technique, which we referred to as Con-
trolled Reproduction.

The tradeoff between exploration and exploitation in a GA is
determined mainly by the mechanisms that are used to select
individuals. Generally, a GA follows (a) a selection scheme to select
individuals to which the genetic operators are applied; and (b) a
replacement strategy by which to select the individuals in the
population that are going to be replaced by the new individuals
who are produced by genetic operators. Selective pressure gives
individuals with a higher fitness a higher probability of being
selected for reproduction, mutation, and survival; without it, the
search process becomes random, and promising regions of the
search space are not favored for exploitation. On the other hand,
the population diversity allows for the exploration of new regions
of the search space, helping to produce better solutions and avoid
premature convergence [33,34]. We propose a simple reproduc-
tion technique, referred to as Controlled Reproduction, in which
selective pressure and population diversity are balanced to inc-
rease the algorithm's performance.

5.1. Selection scheme

A selection scheme decides which individuals are allowed to
pass on their genes to the next generation, either through cloning,
crossover or mutation; it attempts to improve the average quality
of the population by giving individuals of higher quality a higher
probability of being part of the next generation. Generally, selec-
tion schemes from the literature could be split into three classes:
proportional selection, tournament selection and ranking selec-
tion; the selection is according to the relative fitness, using the
best of the random groups or the best individuals. In proportional
selection, maintaining adequate selective pressure as the popula-
tion becomes more homogeneous is difficult because there is less
variation in the fitness. Alternatively, when tournament and
ranking selection are configured to use a high selective pressure,
a number of important solutions are discarded [35,36].

We propose a controlled selection scheme to make a clear
differentiation between good and poor quality individuals, giving all
of the individuals a chance to contribute to the next generation but
forcing the survival of the best individuals. The strategy uses an elitist
technique together with two-inverted rankings to select individuals,
which ensures the diversity of the solutions. To maintain an adequate
selective pressure, the elite technique controls the survival of an elite
group B, which includes the best individuals of the population P,
modifying elite individuals only when they exceed a predefined life
span. In Section 6.3, we perform substantial experimentation on the
impact of the size of the elite group B.

� Controlled selection for crossover. When applying the crossover
operator, nc parents are selected to generate nc children. We
generate the sets of parents G and R, with good and random
individuals, respectively; these elements are going to be pairwise
combined, crossing Gi with Ri (0rionc/2). Set G includes nc/2
individuals taken at random with a uniform probability from the
best nc individuals of P; set R includes nc/2 individuals chosen at
random from P\Bwith a uniform probability. Note that, as the best
nc individuals might have common members with the P\B set, the
algorithm guards against the selection of the same individual at
the same position, which eliminates the possibility of a crossover
within the same individual. In contrast to other selection methods,
the best individuals are forced to breed every generation, which
promotes the survival of the best genes. However, we forbid the
crossover between the best individuals (the elite group B) to
promote genetic diversification.

� Controlled selection for mutation. Given a number of individuals
to mutate nm (with nm4 |B|), the mutation operator is applied

Table 2
Experimental results obtained by the mutation proposed by Falkenauer and our
mutation strategies.

Class Inst. Falkenauer
mutation

Adaptive
mutation

Adaptive
mutationþRP

opt. dif. opt. dif. opt. dif.

Uniform 80 3 1.06 32 0.33 78 0.01
Triplets 80 0 7.83 0 5.94 42 0.43
Data Set 1 720 537 3.10 623 1.00 694 0.25
Data Set 2 480 276 7.77 347 4.28 477 0.09
Data Set 3 10 0 0.42 0 0.21 8 0.03
Was 1 100 15 4.72 55 2.50 99 0.05
Was 2 100 61 1.79 87 0.60 99 0.04
Gau 1 17 2 0.92 5 0.70 12 0.20
Hard28 28 5 0.33 5 0.33 4 0.35
Total 1615 899 27.97 1154 15.93 1513 1.51
Effectiveness 0.55 0.71 0.93
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to the best nm individuals of P in two phases: cloning of the
elite group and mutation of the best. Following an elitist
approach, the cloning is for individuals of set B whose age is
less than a predefined life_span parameter; this criterion is
intended to exploit the best solutions without losing good
patterns. After the cloning phase, individuals to mutate are
taken from P given the decreasing order of their fitness.

5.2. Replacement strategy

A replacement strategy defines which individuals in the current
population are forced to perish to make room for new offspring.
Generally, the replacement strategies can be split into three classes:
age-based, fitness-based and random-based (deleting the oldest,
worst or random individuals). It has been demonstrated that
replacing the oldest and replacing random strategies decreases
the selective pressure, losing some of the best solutions; while
replacing the worst can lead to premature convergence [33,34].

Our controlled replacement strategy contributes to seeking an
appropriate balance between the exploration and exploitation of the
search space. To promote exploration, in contrast to other replace-
ment strategies, new individuals are always allowed to enter the
population. Moreover, we combine an elitist approach with a strategy
for preserving the population diversity by replacing the worst
individuals and duplicated-fitness individuals with new offspring:

� Controlled replacement for crossover. After applying controlled
selection, we have a set of high-quality solutions G as the first
parents and a set of random solutions R as the second parents.
The crossover operator generates a set C of nc children. The first
nc/2 children are introduced to P and replace the individuals in
the set of random parents R. The other nc/2 children are
introduced in P\(B[R) with the following rules: (a) if there
are individuals with duplicated fitness, replace them with new
offspring; (b) if there are children that have not been inserted
into P, then introduce them, replacing the worst solutions.

� Controlled replacement for mutation. When applying the muta-
tion operator, some of the best individuals are cloned to
preserve the best solutions. Every clone can be entered into
the population in two ways: (a) if there are solutions with
duplicated fitness, then the clone will replace one of these; and
(b) if the first alternative is not possible, then the clone will
replace the worst solution.

Note that if x individuals (solutions) have the same fitness value,
our controlled replacement strategy attempts to replace x�1 indivi-
duals with new offspring. Observe that the fact that two individuals
have the same fitness does not implicate that they are duplicate
chromosomes; given that looking for duplicate chromosomes is too
expensive, our proposal is an approximation to this scheme.

5.3. Comparing controlled reproduction with other state-of-the-art
techniques

To show the contribution of our new reproduction technique,
we conducted a comparative experiment in which three selection
schemes and two replacement strategies were combined with the
objective to explore the performance of different reproduction
techniques:

� Ranking selection (RS), where individuals to be recombined are
selected from the best 50 individuals with a uniform prob-
ability, and a mutation operator is applied to the best nm
individuals [36].

� Proportional selection (PS), where individuals to be recombined
are selected using a roulette wheel selection, and a mutation
operator is applied to the best nm individuals [36].

� Controlled selection (CS), where a selection of individuals for
crossover and mutation is made with our selection scheme,
which promotes survival of the best genes with the use of
elitism and population diversity with two inverted rankings.

� Replace worst (RW), where the worst nc individuals are replaced
by their progeny [33].

� Controlled replacement (CR), where the replacement is made
with our replacement strategy, which combines an elitist
approach with the replacement of duplicated fitness and the
worst individuals with new offspring.

The procedures were combined in six reproduction techniques:
RSþRW, RSþCR, PSþRW, PSþCR, CSþRW and CSþCR. It is
important to note that when we combine RS or PS with CR, CR
is not our completed replacement method, given that our strategy
is linked to our controlled selection CS (with the elite group and
the set of random parents R). Instead, we use an approximation by
the following: (a) if there are individuals with duplicated fitness,
replace them with new offspring; and (b) if there are children that
have not been inserted into P, then introduce them by replacing
the worst solutions. All of the algorithms were run with the same
configuration, which is described in Section 6. The first two
selection schemes (RS and PS) use only the first five parameters
because they do not use an elite group. We experiment with the
nine sets of benchmark instances. Fig. 6 shows the results that
were obtained from this experiment. For every selection scheme (RS,
PS and CS), Fig. 6 shows the total relative difference that is obtained
when a given selection scheme is combined with one of the two
replacement strategies (RW and CR).

From Fig. 6, it can be observed an improvement in the
effectiveness when we used our replacement strategy CR rather
than RW, by introducing population diversity with the replace-
ment of individuals who have repeated fitness. We can also see the
superiority of our controlled reproduction technique (CSþCR),
which improves the effectiveness of RSþCR and PSþCR by 198%
and 463%, respectively. These results confirm that our strategy by
which to balance the selective pressure and population diversity
tends to lead to a higher effectiveness and that the use of elitism
makes a major contribution to the final performance.

6. Main computational experiments

The GGA-CGT algorithm was developed in the Cþþ language
and was compiled using Borland Cþþ 5.02 in the Win32 mode.
The experiments were performed on a computer with an Intel
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Fig. 6. Experimental results for three selection schemes (Ranking Selection RS,
Proportional Selection PS, and Controlled Selection CS) and two replacement
strategies (Replace Worst RW, and Controlled Replacement CR). The last bar
represents the total relative difference in our controlled reproduction technique.

M. Quiroz-Castellanos et al. / Computers & Operations Research 55 (2015) 52–64 59



Core 2 Duo processor E6300 1.86 GHz. Similar to most of the
previous work on BPP [6,8], for each instance, a single execution of
the algorithm GGA-CGT was run, with the initial seed for the
random number generation set to 1. In all of the experiments, the
following parameters were used for our GA implementation:

(a) Population size |P|¼100
(b) Maximal number of generations max_gen¼500
(c) Number of individuals to be recombined nc¼20
(d) Number of individuals to mutate nm¼83
(e) The number of bins to eliminate nb in the mutation operator

for the non-cloned solutions is calculated using a rate of
change of k¼1.3

(f) Number of individuals in the elite set |B|¼10
(g) The number of bins to eliminate nb in the mutation operator

when a solution was cloned is calculated using a rate of change
of k¼4

(h) Maximal age for an individual to be cloned life_span¼10

The first two parameter values were established considering
the values used by other GAs that solved BPP; they use a
population size of 100 individuals and a maximum number of
generations of between 1000 and 10,000 [7,17,19]. The other
parameter values were tuned by means of an experimental
approach [37] that was based on covering arrays to obtain a
minimal representative set of sample configurations to assess the
impact of the parameters that control the performance of the
algorithm. For the sake of brevity, we did not include the tuning
process; however, in Section 6.3, the impact of some of the
parameter values on the global performance of the algorithm is
analyzed.

To assess the performance of the HGGA-PP algorithm, we
experimented with different types of published problems, which
are considered to be very hard. The trial benchmark had been
elected by different authors to compare the effectiveness of their
proposals with other algorithms that were state-of-the-art; it
includes 1615 standard instances in which the number of items
n varies within [50, 1000] and the intervals of the weights are
within (0, c]. Such benchmark instances can be found on recog-
nized websites [27–30].

6.1. Speed of different computers

A comparison between a new algorithm and several previously
reported algorithms cannot always be accomplished directly, due to
the variability of the different processors that are used in the
computational tests. We address this problem by calculating scale
factors, which are used to compare the performance of the algo-
rithms as if they were running on the same computer. For det-
ermining the scale factors of each processor, we calculate the average
CPU speed from the data that is reported on the SPEC standard
benchmark. Because the processors that were used in the compar-
ison are reported in different SPEC benchmarks, a preliminary

treatment was required for scaling between benchmarks. Table 3
presents the scale factors for each of the processors when used by
the reference algorithms, which is a CPU speed ratio that is calculated
with respect to our computer (see CPU speed benchmarks available
at http://www.spec.org/results).

For the experiments in this section, we adopted a Unified
Computational Time (UCT) to express the conversion of the ori-
ginal CPU times taken from the literature into comparable units
[38,39]. This convention is needed to do a fair comparison of the
effectiveness of the different approaches evaluated in the experi-
ments. The UCT of each algorithm is calculated by multiplying the
time that is reported in the literature by its corresponding scale
factor presented in Table 3. As explained above, the scale factors
were obtained considering our computer (an Intel Core2 Duo
processor E6300 1.86 GHz) as a reference machine. The comparative
tables in this section show a column for each algorithm's computa-
tional time expressed in UCT, except for our algorithm GGA-CGT,
where the CPU time and UCT are equivalent because its scale factor is
by definition equal to 1 (see column 4 in Table 3).

6.2. Comparing GGA-CGT with an existing grouping genetic
algorithm

In Section 4, we compared our new genetic operators with
those proposed by Falkenauer, showing the superiority of our new
methods: FF-ñ, gene-level crossover and adaptive mutation. In this
section, we compare the GGA-CGT algorithm with Falkenauer’s
hybrid grouping genetic algorithm for BPP (HGGA), which includes
a local optimization that is inspired by the dominance criterion [7].
Table 4 summarizes Falkenauer's results as well as those obtained
by our GGA-CGT algorithm over the same benchmark instances
(instances proposed by Falkenauer). Columns 1 and 2 list the sets
of instances and the number of instances in every set. The next
columns show, for each GA, the number of instances in which the
algorithm obtained an optimal solution (Column opt.); the average
running time as measured in seconds (Column time); and the
maximum number of generations that was given to the algorithms
(Column max gen).

Table 4 also shows the scaled average running time expressed
in UCT (see Section 6.1). The scaled times in the column UCT (s) of
HGGA are calculated by multiplying the times in the column time
(s) by its corresponding factor presented in Table 3. Our algorithm
GGA-CGT (the reference algorithm) does not have a column for
UCT because this measure is equivalent to its original time. From
Table 4, we can observe that with the original times, it appears
that GGA-CGT is much more computationally efficient than HGGA,
but when applying the conversion, the gain is less impressive
(HGGA has a mean of 12 s and GGA-CGT 0.3 s). However, we can
conclude that GGA-CGT is faster and more effective than HGGA by
finding the optimal solutions of all of the instances in a small
number of generations.

In spite of the simplicity of our GGA-CGT, the use of intelligent
operators and controlled reproduction allow for us to obtain the

Table 3
Scale factors used to compare the performance of our algorithm against state-of-the-art algorithms (12 is the divisor, given that the processor that we used
has this speed).

Algorithm Processor CPU speed Scale factor

HGGA R4000 Silicon Graphics
workstation 50 MHz

0.097 (SPEC92-PEC2006) 0.0972/12¼0.008

HI_BP Pentium IV 1.7 GHz 3.497(SPEC2000-SPEC2006) 3.497/12¼0.291
Pert.-SAWMBS Intel core2 Quad CPU Q8200

2.33 GHz
18.0 (SPEC2006) 18/12¼1.5

GGA-CGT Intel Core2 Duo processor E6300
1.86 GHz

12 (SPEC2006) 12/12¼1
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optimal solution to all of the Falkenauer instances by using a
minimal number of generations. GGA-CGT is capable of optimally
solving all of these instances in less than 250 generations, but the
parameter max_gen was configured by accounting for all of the
benchmark instances.

Generally, the grouping genetic algorithm was introduced by
Falkenauer [40]. Since the time of that introduction, this approach
has been successfully applied to many problems in very different
fields [41,42]. We have shown that a gene-level crossover is a
better alternative for a grouping encoding scheme (Section 4.4);
we also showed that the use of an adaptive elimination proportion
improves the mutation performance (Section 4.5). Last, we showed
that the performance of our grouping genetic algorithm is better
than the performance of Falkenauer HGGA. Although the exact
implementation details depend on the type of grouping problem,
our genetic operators and our controlled reproduction techn-
ique are good alternatives to improving the grouping genetic
algorithm's performance.

6.3. Comparing GGA-CGT with state-of-the-art procedures

To investigate the effectiveness of the GGA-CGT heuristic, we
compared the results that were obtained by this algorithm with
those that were obtained by the best approaches reported in the
literature: HI_BP [8] and Perturbation-SAWMBS [6]. We also
executed the code (in C) of HI_BP that was supplied by the authors
on the Hard28 class. Table 5 shows, for each problem class, the
number of problem instances and, for each approach, the number
of instances in which the algorithm obtained an optimal solution
(Column opt.). Table 5 also shows the average running time,
measured in seconds (Column time) and in comparable units
(column UCT); GGA-CGT does not require the UCT conversion
because it is the reference algorithm (see Sections 6.1 and 6.2). In
all of the cases, when an algorithm cannot find an optimal
solution, the solution that was found has one more bin in relation
to the optimal solution.

We note, in Table 5, the superiority of GGA-CGT while consider-
ing the class of Hard28 instances, which contain the most difficult
instances for the known algorithms. For this class of test problems,
it can be observed that GGA-CGT solves more instances, beating the
effectiveness of the best algorithms in the state-of-the-art. It is
important to remark that Perturbation-SAWMBS of Fleszar and
Charalambous [6] is a fast heuristic approach that achieves almost
identical results to GGA-CGT in all but the Hard28 instances set at a
fraction of the time. Even with unified time, Perturbation-SAWMBS
is the fastest algorithm; however, GGA-CGT significantly outperforms
Perturbation-SAWMBS in the Hard28 set. For this group of difficult
problems, Fleszar and Charalambous [6] note that even increasing the
number of iterations of their heuristic (Perturbation-SAWMBS) from
2,000 to 100,000 does not make it possible to improve the found

solutions, emphasizing the difficulty of these instances and recom-
mending its use for future BPP heuristic studies. We obtained similar
results when we increased the time of the search in the HI_BP
procedure.

Similar to Alvim et al. [8] and Fleszar and Charalambous [6], we
performed a robustness test by executing the GGA-CGT algorithm
five times with different seeds of random numbers (8075 runs).
The proposed algorithm found the optimal solutions in 7997 runs,
missing the optimal solution in only 78 cases; in contrast, HI_BP
[8] and Perturbation-SAWMBS [6] fail to obtain the optimal
solutions in 144 and 128 cases, respectively (the numbers were
adjusted while accounting for the Hard28 set). We can conclude
that GGA-CGT shows high precision and robustness.

Experimental results indicate that our genetic strategy is a
high-quality algorithm that produces good and robust results on a
suite of test problems with very different sizes and structures,
outperforming more complicated strategies in a short running
time. As a consequence of the use of intelligent heuristics that
preserve the best features of the solutions and a controlled repr-
oduction technique, the proposed genetic algorithm is a simple and
effective tool for different classes of bin packing instances.

6.4. Analyzing the performance of GGA-CGT

We performed an experimental analysis to study the global
performance of the GGA-CGT algorithm and to observe the impact
of some of the key strategies that are included in it. We studied the
overall performance and the effectiveness of the algorithm in a
long-term execution. We also analyzed the influence of the elite
group B and the rate of change k used by the mutation operator. In
all of the cases when the value for a parameter is not specified, the
parameter will have the value defined in Section 6.

6.4.1. GGA-CGT overall performance
We can illustrate and analyze the average behavior of GGA-CGT

by observing the evolution of the best global solutions that are
produced in every generation during 20 independent executions of
the algorithm over each instance. Fig. 7 shows the execution
profiles of two Hard28 instances (hBPP561 and hBPP645) that
could not be solved by the state-of-the-art algorithms. Each plot
represents the worst, average and best fitness values of the global
best solutions of the 20 executions (ordinate) in every generation
of GGA-CGT (abscissa).

From Fig. 7, we can observe that, before one of the executions
reaches the optimal solution (fitnessE1), there is a relatively

Table 4
Comparison between GGA-CGT and the grouping genetic algorithm HGGA of
Falkenauer [7].

Class Instances HGGA GGA-CGT

opt. Time (s) UCT (s) max_gen opt. Time (s) max_gen

u_120 20 18 381 3.048 2000 20 0.006 500
u_250 20 18 1337 10.696 2000 20 0.297 500
u_500 20 20 1015 8.120 5000 20 0.160 500
u_1000 20 20 7059 56.472 5000 20 0.583 500
t_60 20 18 47 0.376 1000 20 0.053 500
t_120 20 20 79 0.632 1000 20 0.147 500
t_249 20 20 728 5.824 2000 20 0.390 500
t_501 20 20 1663 13.304 2000 20 1.296 500
Total 160 154 1538.6 12.308 160 0.366

Table 5
Results obtained by the best heuristic algorithms applied to BPP (time in seconds).

Class Inst. HI_BP Pert.-SAWMBS GGA-CGT

opt. Time
(s)

UCT (s) opt. Time
(s)

UCT
(s)

opt. Time
(s)

Uniform 80 80 0.03 0.00873 79 0.00 0.00 80 0.23
Triplets 80 80 0.98 0.28518 80 0.00 0.00 80 0.41
Data Set
1

720 720 0.19 0.05529 720 0.01 0.015 720 0.35

Data Set
2

480 480 0.01 0.00291 480 0.00 0.00 480 0.12

Data Set
3

10 10 4.60 1.3386 10 0.16 0.24 10 1.99

Was 1 100 100 0.02 0.00582 100 0.00 0.00 100 0.00
Was 2 100 100 0.02 0.00582 100 0.01 0.015 100 1.07
Gau 1 17 12 0.60 0.1746 16 0.04 0.06 16 0.27
Hard28 28 5 – 5 0.24 0.36 16* 2.40
Total 1615 1587 0.77 0.22407 1590 0.05 0.075 1602 0.35

n GGA-CGT outperforms the best algorithms on the Hard28 instances.
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small gap between the worst and the best solutions that were
found during the executions of GGA-CGT. The small variation in
the GGA-CGT behavior in different executions is an indicator of the
algorithm’s precision and robustness. It is important to note that
the largest fluctuation in the fitness is still small given the nature
of the fitness function; a large leap means that the size in the best
solution was improved in one bin, which in these cases means that
the optimal solution was found after a period in which the genetic
operators worked to improve the package of the current bins to
reduce the size of the solutions. Similar behaviors were obtained
using all of the benchmark instances.

As seen in Fig. 7, the hBPP561 instance was optimally solved in
all of the executions in a short time, while for the hBPP645
instance, the optimum was found in some executions using a
major number of generations. Observing the behavior of GGA-CGT
over these similar instances opens up the question of what are the
properties of these instances that impact their degree of difficulty.

6.4.2. GGA-CGT long-term execution
We have investigated how the values of max_gen influence the

heuristic performance. Table 6 summarizes the results; for each
problem class and each value of max_gen, it shows the probability
of finding optimal solutions with GGA-CGT. The average probabil-
ity of finding optimal solutions increases from 97.39 to 99.62,
while the maximum number of generations increases from 50 to
10,000,000. These results prove the algorithm’s precision and
robustness because they show that GGA-CGT can reach the
optimal solution of a huge variety of BPP instances. On the other
hand, this study allowed for us to identify which instances show a
higher degree of difficulty for the algorithm. It would be interest-
ing to know the characteristics that make a difference in the
degree of difficulty within each class of instances, to be able to
define appropriate strategies that allow for us to improve the
algorithm performance. Again, we observe the difficulty of the
Hard28 instances, where the algorithm requires a larger effort to
determine the optimal solutions.

6.4.3. Influence of the FF-ñ heuristic
In Section 4.3, we showed the effect of exploiting knowledge

about the problem to obtain a high-quality initial population. In
this section, we show the impact of the FF-ñ heuristic on the final
performance of the GGA-CGT algorithm. When we execute our
GGA-CGT with FF over the benchmark instances, its average
performance is lower than with FF-ñ (see Table 5); the algorithm
finds the optimal solution in only 1598 instances. This experiment
shows that the use of the FF-ñ heuristic instead of FF allows us to
obtain an advantage of 4 optimal solutions.

To evaluate all of the potential of our FF-ñ heuristic, we have
performed some experimental comparisons over large-scale

instances with different proportions of large items. We generate
25 class instances, which are referred to as u-w1-wn, and they are
available at https://sth-se.diino.com/lauracruzreyes/REPOSITORY/
BPP-INSTANCES; each class includes 50 instances. For all of the
1250 instances, the number of items is n¼5000, and the bin
capacity is c¼1000. For each class, given a lower weight w1 and
the upper weight wn, the item weights were generated to be
uniformly distributed in the interval [w1, wn]. Table 7 shows the
performance of two versions of our GGA-CGT algorithm where the
population was generated with FF-ñ and FF, respectively. Each row
indicates the lower weight w1, and each column indicates the
upper weight wn, which were used to generate the instances of the
corresponding class. For each class of instances [w1, wn], the table
shows the average proportion of large items ñ/n as well as the
average number of generations (Gen) that was used by the
algorithm before it met its stopping criterion (see the algorithm
in Fig. 1) for its two versions. The last rows of the table show the
efficiency (Iter.), which is the average number of generations used
by the algorithm, and the effectiveness (Eff.), which is the
percentage of best solutions obtained by each version of the
algorithm.

From Table 7, we can observe that the performance of our GGA-
CGT improves when we switch from FF to FF-ñ and that the impact
of FF-ñ is higher when the proportion of large items increases. In
spite of its simplicity, the strategy of first packing the ñ large items
makes a major contribution to the algorithm's performance.

6.4.4. Influence of the elite group B
The elite group is a critical element in our controlled reproduc-

tion technique because it controls the selective pressure of the
algorithm. To further examine the influence of this element on the
global performance of our GGA-CGT implementation, we have
performed some experimental comparisons using different sizes
for this set. Fig. 8 shows the number of optimal solutions that are
found when we explore the impact of the size of B over different
configurations for nc and nm.

From Fig. 8, we can observe the impact of including an elite
group in the reproduction technique of GGA-CGT; however, it is
important for the size of the elite group to be small enough to
contribute to evolution without an impact on the population
diversity. These results confirm the importance of having a fair
balance between the selective pressure and population diversity.

6.4.5. Influence of the rate of change k used by the mutation operator
In this experiment, we explore the effect of the proportion of

bins to eliminate when applying our adaptive mutation operator.
The mutation operator is applied to two classes of individuals:
normal and cloned elite solutions. By studying the impact of the
GGA-CGT parameters, we observed that the rate of change k used
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Fig. 7. Execution profiles of GGA-CGT over the two Hard28 instances: (a) hBPP561 and (b) hBPP645.
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to calculate the number of bins to eliminate nb in the mutation
operator must be configured differently for normal and cloned
individuals. Fig. 9 includes two plots that show the impact of
different values of k when a mutation is applied to normal and
cloned individuals. From the plots, we observe how, in contrast to
the case of non-cloned individuals, it is important to use a higher
elimination proportion when we mutate cloned solutions. It is
important to remember that all of the cloned solutions come from
elite solutions; in this case, a higher elimination proportion in the
mutation operator allows for it to escape from a local optimum
and explore other good zones of the search space. These results
emphasize the importance of making a configuration of the
principal parameters and allow for us to understand their impact
on the algorithm behavior, to improve the final performance.

7. Conclusions and future work

A new grouping genetic algorithm was developed for the Bin
Packing Problem; this algorithm is referred to as GGA-CGT. The

algorithm includes heuristic strategies that promote the transmission
of the best genes of the chromosomes and that allow for exploration
of the search space. GGA-CGT controls the selection of individuals, to
create a balance between the selective pressure and population
diversity, avoiding the premature convergence of the algorithm and
obtaining better solutions in a small number of generations.

Experimental results confirm that GGA-CGT produces good and
robust results on a suite of test problems that have very different
sizes and structures. GGA-CGT outperforms the results obtained by
the state-of-the-art algorithms on the Hard28 set, which is the
class of instances that were reported to date as the most difficult.
The efficiency of the proposed algorithm is very high when
compared to the number of iterations that are required by pre-
vious population strategies [7,15,16,18,19]. We are aware of the
large number of parameters of GGA-CGT that must be estimated. For
this reason, we are working on reducing the number of parameters
that must be adjusted. Furthermore, to decrease the tuning effort, we
are developing a new method for parameter tuning. We are also
developing a new encoding scheme to reduce the search space that is
generated by isomorphic solutions; we believe that this approach will
improve the execution time of our genetic algorithm.

The study of the results that were obtained by the best algorithms
for the BPP solution revealed that there still are standard instances
that have a high degree of difficulty; for these instances, the included
strategies in the algorithms do not appear to lead to better solutions. It
was also observed that none of the strategies in the state-of-the-art
have been analyzed to explain the reasons for the good or bad
performance. It is important to identify which are the characteristics
that distinguish the BPP instances and that could be the cause of its
degree of difficulty. Furthermore, it is necessary to understand the
algorithms’ behavior and to identify the strategies that allow for them
to reach their performance. It is expected that the work presented in
this study represents a guideline for studying the performance of
heuristic algorithms. This knowledge can be used to develop new
intelligent procedures for solving NP-hard problems.

Table 6
The probability of finding optimal solutions with the GGA-CGT heuristic.

max_gen Percentage of optimal solutions for each problem class

U T Set 1 Set 2 Set 3 Was 1 Was 2 Gau 1 Hard28

50 97.50 90.00 99.72 100.00 90.00 100.00 100.00 88.23 3.57
100 97.50 96.25 99.72 100.00 88.23 28.57
500 100.00 100.00 100.00 94.11 57.14
5000 94.11 60.71
10000 94.11 64.28
100000 94.11 71.42
1000000 94.11 75.00
10000000 94.11 78.57

Table 7
The impact of the FF-ñ and FF heuristics on the final performance of the GGA-CGT algorithm.

w1 wn

600 700 800 900 1000

ñ/n Gen ñ/n Gen ñ/n Gen ñ/n Gen ñ/n Gen

FF-ñ FF FF-ñ FF FF-ñ FF FF-ñ FF FF-ñ FF

1 0.16 0.3 0.52 0.28 1.04 2.02 0.37 2.64 4.76 0.44 39.6 44.6 0.49 75.6 87.9
100 0.2 4.88 5.36 0.33 9.02 12.3 0.42 67.1 74.6 0.49 76.4 86.9 0.55 26.6 40.4
200 0.25 48.9 58.9 0.39 100 100 0.49 48.8 77 0.57 15.5 36.1 0.62 24.2 39.7
300 0.33 49.7 51.6 0.49 12.8 40.0 0.59 6.4 29.4 0.66 6.5 29.2 0.71 12.1 27.6
400 0.49 1.2 13.7 0.66 1.28 12.7 0.74 1.18 14.4 0.79 0.1 19.5 0.83 0.9 17.2
Iter. 21.0 26.0 24.8 33.4 25.2 40.0 27.6 43.3 27.9 42.6
Eff. 1 0.99 1 0.99 1 1 1 0.99 1 0.98
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Last, the introduction of a new set of grouping genetic opera-
tors and a new reproduction technique opens up an interesting
range of possibilities for future research. Currently, we are working
on applying a GGA that is similar to the GGA-CGT algorithm to
other grouping problems.
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Fig. 9. The effect of the rate of change k over the cloned and non-cloned individuals.
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